New construction of mutually unbiased bases in square dimensions

نویسندگان

  • Pawel Wocjan
  • Thomas Beth
چکیده

We show that k = w + 2 mutually unbiased bases can be constructed in any square dimension d = s provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (k, s)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bounds on the asymptotic growth of the number of mutually orthogonal Latin squares (based on number theoretic sieving techniques), we obtain that the number of mutually unbiased bases in dimensions d = s is greater than s for all s but finitely many exceptions. Furthermore, our construction gives more mutually orthogonal bases in many non-prime-power dimensions than the construction that reduces the problem to prime power dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolated Hadamard Matrices from Mutually Unbiased Product Bases

A new construction of complex Hadamard matrices of composite order d = pq, with primes p, q, is presented which is based on pairs of mutually unbiased bases containing only product states. We illustrate the method for many product dimensions d < 100 by analytically deriving complex Hadamard matrices, both with zero and non-zero defect. In particular, we obtain at least 12 new isolated Butson-ty...

متن کامل

Constructing Mutually Unbiased Bases from Quantum Latin Squares

We introduce orthogonal quantum Latin squares, which restrict to traditional orthogonal Latin squares, and investigate their application in quantum information science. We use quantum Latin squares to build maximally entangled bases, and show how mutually unbiased maximally entangled bases can be constructed in square dimension from orthogonal quantum Latin squares. We also compare our construc...

متن کامل

Entanglement in mutually unbiased bases

One of the essential features of quantum mechanics is that most pairs of observables cannot be measured simultaneously. This phenomenon manifests itself most strongly when observables are related to mutually unbiased bases. In this paper, we shed some light on the connection between mutually unbiased bases and another essential feature of quantum mechanics, quantum entanglement. It is shown tha...

متن کامل

Aspects of mutually unbiased bases in odd prime power dimensions

In a complex vector space of dimension N , by a full set of mutually unbiased bases (MUB’s) we mean a set of N+1 orthonormal bases such that the modulus square of the scalar product of any member of one basis with any member of any other basis is equal to 1/N . If we take e to denote the k vector in the α orthonormal basis, then having a full set of MUB’s amounts to having a collection e ; α = ...

متن کامل

16 2 v 2 3 0 M ar 2 00 1 A new proof for the existence of mutually unbiased bases ∗

We develop a strong connection between maximally commuting bases of orthogonal unitary matrices and mutually unbiased bases. A necessary condition of the existence of mutually unbiased bases for any finite dimension is obtained. Then a constructive proof of the existence of mutually unbiased bases for dimensions which are power of a prime is presented. It is also proved that in any dimension d ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Quantum Information & Computation

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005